Actin depolymerisation induces process formation on MAP2-transfected non-neuronal cells.

نویسندگان

  • K Edson
  • B Weisshaar
  • A Matus
چکیده

We have previously shown that microtubules in nonneuronal cells form long, stable bundles after transfection with the embryonic neuronal microtubule-associated protein MAP2c. In this study, we found that treating MAP2c-transfected cells with the actin depolymerising drug cytochalasin B led to the outgrowth of microtubule-containing processes from the cell surface. This effect was specific to MAP2c and did not occur in untransfected cells whose microtubules had been stabilised by treatment with taxol. The outgrowth and retraction of these processes during repeated cycles of cytochalasin addition and removal was followed by video time-lapse microscopy and was suggestive of a physical interaction between compressive forces exerted by the MAP2c-stabilised microtubule bundles and tensile forces originating in the cortical actin network. We suggest that MAP2c confers three properties on cellular microtubules that are essential for process outgrowth: stability, bundling and stiffness. The latter probably arises from the linking together of neighbouring tubulin subunits by three closely spaced tubulin-binding motifs in the MAP2 molecule that limits their motion relative to one another and thus reduces the flexibility of the polymer. Similar multimeric tubulin-binding domains in other proteins of the MAP2 class, including tau in axons and MAP4 in glial cells, may play the same role in the development and support of asymmetric cell morphology. Axial bundles of microtubules are found in growing neurites but not in growth cones, suggesting that the regulated expression of these MAP-induced properties makes an important contribution to the establishment of a stable process behind the advancing growth cone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule-associated Protein 2c Reorganizes Both Microtubules and Microfilaments into Distinct Cytological Structures in an Actin-binding Protein-280–deficient Melanoma Cell Line

The emergence of processes from cells often involves interactions between microtubules and microfilaments. Interactions between these two cytoskeletal systems are particularly apparent in neuronal growth cones. The juvenile isoform of the neuronal microtubule-associated protein 2 (MAP2c) is present in growth cones, where we hypothesize it mediates interactions between microfilaments and microtu...

متن کامل

Sequence analysis of MAP2 function in living cells.

Microtubule-associated protein 2 (MAP2) is an abundant neuron-specific protein that binds to microtubules through a domain near its carboxyl terminus that contains either three or four similar repeats of a 31 amino acid motif. When expressed in non-neuronal cells by transfection MAP2 stabilises microtubules and induces their rearrangement into long bundles that are capable of supporting process...

متن کامل

Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau.

We previously transfected MAP2, tau and MAP1B cDNA into fibroblasts and have studied the effect of expression of these microtubule-associated proteins on microtubule organization. In this study, we examined some additional characteristics of microtubule bundles and arrays formed in fibroblasts transfected with these microtubule-associated proteins. It was found that microtubule bundles formed i...

متن کامل

Functional analysis of the MAP2 repeat domain.

The neuronal microtubule-associated protein MAP2 binds to microtubules via a domain near its C terminus containing a set of 3 or 4 imperfect repeats of a 31 amino acid motif. Using naturally occurring and mutated forms of the molecule containing between 1 and 4 repeats we have examined the contribution that these repeats make to MAP2 function and explored the significance of their repetition. T...

متن کامل

Statistical Modelling of a Preliminary Process for Depolymerisation of Cassava Non-starch Carbohydrate Using Organic Acids and Salt

A preliminary study on statistical modelling of a process for depolymerisation of cassava non-starch carbohydrate using halide salt assisted phosphoric and pyruvic acids were accomplished. The effects of three independent variables namely; acid concentration, potassium iodide salt and duration were studied using the central composite rotatable design on hydrolysis of the cassava non-starch carb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 117 2  شماره 

صفحات  -

تاریخ انتشار 1993